Practical measures of integrated information for stationary systems

Adam B. Barrett and Anil K. Seth

Sackler Centre for Consciousness Science and School of Informatics, University of Sussex, Brighton, UK
adam.barrett@sussex.ac.uk, http://www.sussex.ac.uk/sacker

Integrated information

Integrated information, Φ, quantifies the extent to which a system as a whole generates more information than the sum of its parts. Φ has been suggested to measure the quantity of consciousness generated by a system [1,2], and shares with similar approaches [3] an emphasis on measuring conjoint integration and segregation in a system’s dynamics, reflecting basic properties of conscious phenomenology.

Φ_{MIB}

The latest formulation, Φ_{MIB}, measures the integrated information generated when a system transitions into a particular state [1,2]. Information is quantified as the reduction in entropy of a hypothetical past state that, at a priori, had maximum entropy.

Φ_{Stat}

Measuring Φ_{MIB} requires 2 assumptions that deny application to real neural systems. Namely, that the system be

1. **Memoryless**: The maximum entropy distribution can only be imposed as an initial condition. In the brain we only observe states with history. Hypothetical evolution of a state without history can only be characterized if the system has no memory.
2. **Discrete**: Continuous variables don’t have a unique maximum entropy distribution.

Stationary Φ (Φ_{Stat}): definition

We propose a new measure, Φ_{Stat}, based on information generated by the current state about an actual past state. This enables application to any stationary time-series data.

- The effective information (EI) with respect to bipartition $B = \{M^1, M^2\}$ is the information generated by the whole X minus the sum of that of the parts. For current state $x = (m^1, m^2)$, the EI for timescale τ is

$$\text{EI}(x, \tau, B) = I(X_{-\tau} |X_\tau = x) - \sum_{i=1}^2 I(M^i_{-\tau} |M^i_\tau = m^i).$$

- The minimum information bipartition (MIB) minimizes normalized EI:

$$B_{\text{MIB}}(x, \tau) = \arg \min_B \left\{ \frac{\text{EI}(x, \tau, B)}{\log |B|} \right\}.$$

$$K_{\text{MIB}}(\{M^1, M^2\}) = \min_B \|H(M^i_\tau)\|.$$

Normalization is necessary because sub-systems that are almost as large as the whole generate almost as much information as the whole; we require a bias towards approximately even bipartitions.

- Finally, the integrated information is the EI with respect to the MIB:

$$\Phi_{\text{Stat}}(x, \tau) = \text{EI}(x, \tau, B_{\text{MIB}}(x, \tau)).$$

Φ_{Stat} in practice

Φ_{Stat} can be computed numerically from time-series and analytically given a generative model. For Gaussian systems, only covariance matrices are required [4], making it extremely easy to apply in practice.

- Φ_{Stat} computed analytically and from simulated time-series for example networks. Simulations typically give accurate results, but network (g) exhibits instability.

Optimized networks with (h) 2 equal afferents per node, $\Phi_{\text{MIB}} = 0.245$; (i) all afferents to a given node equal, $\Phi_{\text{Stat}} = 0.30$. (Constant total afferent.)

Auto-regressive Φ (ARΦ)

For non-Gaussian systems we introduce an alternative measure, ARΦ, based on how well the present predicts the past, but only to the extent that predictions based on the whole outstrip predictions based on parts independently. We consider the regression

$$X_{i-\tau} = A \cdot X_i + \epsilon_i,$$

and define predictive power (PP) as

$$\text{PP}(X_{i-\tau} | X_i) = \log |\text{COV}(X_{i-\tau})| - \log |\text{COV}(\epsilon_i)|.$$

(For a part M, substitute M for X.) Then construct ARΦ analogously to Φ_{Stat}, replacing f with PP.

- ARΦ is equivalent to Φ_{Stat} for Gaussian systems [4], whereas for non-Gaussian systems it provides a pragmatic alternative to Φ_{Stat}.

- ARΦ uses linear regression of the present to predict the past. It thus invites comparison with causal density [5], which uses regression of the present to predict the future.

Instability

Varying connection 6 \rightarrow 1 in network (h) results in a discontinuity in Φ_{Stat}. This arises from using normalized EI to find the MIB but non-normalized EI to determine Φ.

Conclusion

- Our measures provide new opportunities for empirically testing the relationship between integrated information and consciousness.

- ARΦ (and Φ_{Stat} for Gaussian systems) are state-independent. If they correlate with consciousness, then conscious level (i) is constant during each stationary epoch in brain activity: (ii) changes when functional connectivity changes.

- Φ_{Stat} and ARΦ use the stationary distribution and measure a ‘process’. By contrast, Φ_{MIB} uses the maximum entropy distribution and measures a ‘capacity’.

- The normalization-instability challenges acquisition of physical meaning to Φ.