Granger causality analysis of steady-state EEG during propofol-induced anaesthesia

Adam B Barrett, Mike Murphy, Mélanie Boly, Steven Laureys, Pierre Boveroux, Quentin Noirhomme, Marie-Aurélie Bruno, Anil K Seth

University of Sussex
Sackler Centre for Consciousness Science

Neuroscience Training Program, University of Wisconsin

COMA Science Group
University of Liège

ASSC 15, Kyoto 2011
What are the neural correlates of conscious level?

Theory suggests directed information flow between brain regions plays a key role in modulating conscious level:

- Edelman’s dynamic core hypothesis (1994)
- Tononi’s integrated information theory (2004, 2008)
- Seth’s causal density (2005, 2008)

However, measuring information flow is technically challenging even given relevant data.
Contexts

- With **real data** most studies compute simpler quantities, e.g. gamma power, synchrony.

- However these measures are not consistently reliable markers.

- When behavioural markers absent, still difficult to assess C. e.g. coma, anaesthesia.

- **Granger causality** is emerging as a promising, pragmatic measure of information flow.
 - Causal density inspired by this.
 - Granger techniques may help test Tononi’s Φ.

In this talk:

• New thorough and rigorous Granger causality method for steady-state EEG.

• Application to data from propofol-induced anaesthesia.
Granger (G-)causality

Causality based on prediction:

How well does past of Y help predict future of X?

(Over and above past of X itself and past of the rest of the system.)

Prediction by linear regression.

Uses many past states as predictors.
G-causality

Full regression (X and Y):

\[X_t = \sum_{i=1}^{p} a_i X_{t-i} + \sum_{i=1}^{p} b_i Y_{t-i} + \varepsilon_t \]

Restricted regression (just X):

\[X_t = \sum_{i=1}^{p} c_i X_{t-i} + \varepsilon'_t \]

G-causality log-ratio of prediction errors (residuals):

\[GC_{Y\rightarrow X} = \log \frac{\text{var}(\varepsilon')}{\text{var}(\varepsilon)} \]

Useful note: (i) Formula ensures invariance under overall increase in power.

(ii) In sample, \(GC > 0 \) always, and hence biased.

(iii) If have 3\(^{rd}\) variable, \(Z \), then include past of \(Z \) in both regressions.
Frequency domain G-causality

\[GC_{Y \rightarrow X}(f) \]

Based on Fourier transform of full regression.

Roughly the proportion of power of X at frequency \(f \) that derives from interaction with Y.

Time domain GC is mean of \(GC(f) \) over all frequencies.
Application to EEG / Propofol

- Source localised hd-EEG recorded during waking and loss-of consciousness (LOC).
- Anterior cingulate (ACC) and posterior cingulate (PCC) cortices showed increased gamma activity.
- Several minutes of clean data from 7 subjects.

[Murphy et al 2011]
Methods

- Multiple source localized voxels from each region, kept mean time-series from each ROI.
- Filter out 50 Hz line noise.

40s sample from ACC during LOC

- Pick a **time-scale** for analysis: **Downsample** to 250 Hz.
- Choose segment length of 2s. This represents a trade off:
 - For **long segments** have problem of **non-stationarity**.
 - For **short segments** have **poor parameter estimates**.
Methods

For each segment:

- Look at model order recommended by Akaike Information Criterion (AIC).
- Took model order of 20 (80ms), which was 95th percentile of AIC.
- Calculated GC in both directions at frequencies from 1-40Hz. Note we’re safe from line noise filtering artefacts at these frequencies. [Barnett & Seth submitted]

<table>
<thead>
<tr>
<th>Segment no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Matlab toolbox: Anil Seth]
Methods

Had at least 70 segments per condition per subject.

Problem: GC measurements are biased.

- To estimate bias, compute mean GC between 1000 randomized pairs of segments.

- Subtract off estimated bias from raw GC values.

(Do this process separately for each frequency band and direction and condition and subject.)
Results

- Increase in bidirectional G-causality during LOC.
- Increases most pronounced in beta/gamma bands.
- Increase more consistent across subjects than previously reported changes in gamma synchrony.

Plots of means

[Barrett, Seth et al, in preparation]
Results: Tables of significant changes

- Granger changes more consistent but harder to detect than synchrony changes.

<table>
<thead>
<tr>
<th>Subject</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>n/s</td>
<td>(+)</td>
<td>n/s</td>
<td>[+]</td>
<td>n/s</td>
<td>[+]</td>
<td>n/s</td>
</tr>
<tr>
<td>θ</td>
<td>[+]</td>
<td>+</td>
<td>n/s</td>
<td>n/s</td>
<td>+</td>
<td>n/s</td>
<td>n/s</td>
</tr>
<tr>
<td>α</td>
<td>n/s</td>
<td>[+]</td>
<td>n/s</td>
<td>n/s</td>
<td>[+]</td>
<td>n/s</td>
<td>n/s</td>
</tr>
<tr>
<td>β</td>
<td>n/s</td>
<td>+</td>
<td>n/s</td>
<td>n/s</td>
<td>+</td>
<td>n/s</td>
<td>n/s</td>
</tr>
<tr>
<td>γ</td>
<td>(+)</td>
<td>n/s</td>
<td>[-]</td>
<td>n/s</td>
<td>n/s</td>
<td>(+)</td>
<td>n/s</td>
</tr>
<tr>
<td>time domain</td>
<td>(+)</td>
<td>+</td>
<td>n/s</td>
<td>n/s</td>
<td>+</td>
<td>n/s</td>
<td>[+]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
</tr>
<tr>
<td>θ</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>(+)</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
</tr>
<tr>
<td>α</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>[+]</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
</tr>
<tr>
<td>β</td>
<td>n/s</td>
<td>+</td>
<td>n/s</td>
<td>[+]</td>
<td>n/s</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>γ</td>
<td>[+]</td>
<td>(+)</td>
<td>n/s</td>
<td>[+]</td>
<td>[+]</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>time domain</td>
<td>n/s</td>
<td>+</td>
<td>n/s</td>
<td>[+]</td>
<td>n/s</td>
<td>+</td>
<td>(+)</td>
</tr>
</tbody>
</table>

Synchrony

<table>
<thead>
<tr>
<th>Subject</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>-</td>
<td>n/s</td>
<td>+</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
<td>n/s</td>
</tr>
<tr>
<td>θ</td>
<td>n/s</td>
<td>-</td>
<td>n/s</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α</td>
<td>(-)</td>
<td>n/s</td>
<td>n/s</td>
<td>+</td>
<td>n/s</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>β</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>γ</td>
<td>n/s</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+: increase during LOC

+/−: significant at false discovery rate <0.01; (+/−) sig at FDR <0.05; [+/−] sig at p<0.05.

Under Wilcoxon rank sum test of distribution across segments after removing bias.

[Barrett, Seth et al, in preparation]
Conclusion 1: G-causality and Conscious Level

- Theory suggests mean G-causality (causal density) should decrease during LOC.
- However, this is applicable when considering several regions (not just 2), so increase here is not evidence against information integration theories of consciousness.
- Increase observed here could be from common thalamic input to both regions.
- We aim to extend our analysis to more regions, although sensitivity of method will decrease with number of regions (conditional G-causality, more parameters to fit).
Conclusion 2 - Summary

- **New method** for rigorously applying G-causality analysis to steady-state EEG data that
 - Systematically removes bias.
 - Deals with non-stationarity.

- **Significant** changes in G-causality are harder to detect than changes synchrony.

- **Inter-subject consistency of results** illustrate utility of G-causality in exposing functional neural interactions underlying different conscious levels.
Acknowledgments

Funding:

Collaborators:

Analysis: Sussex – Anil Seth, Lionel Barnett

Data Collection: Coma Science Group, Liège - Mélanie Boly, Steven Laureys, Pierre Boveroux, Quentin Noirhomme, Marie-Aurélie Bruno

Data Processing: Wisconsin – Mike Murphy, Giulio Tononi